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Constructal thermal optimization of an electromagnet

Louis Gosselin, Adrian Bejan∗

Department of Mechanical Engineering and Materials Science, Box 90300, Duke University, Durham, NC 27708-0300, USA

Received 12 December 2002; accepted 21 August 2003

Abstract

This paper addresses the fundamental problem of optimizing the geometry of an electromagnet by maximizing at the sam
magnetic performance and thermal performance. The solenoid has a cylindrical shape and a uniform current density. Cooling dis
high thermal conductivity material are inserted in the coil to collect the heat generated by Joule heating. The collected heat is ev
the ambient. For a given magnetic performance and volume, the maximum temperature inside the electromagnet is minimized b
the shape of the coil (length and outer radius), the number of cooling discs, and the amount of high thermal conductivity material
objectives pursued in this geometric optimization (magnetic and thermal) show that the constructal design method can be exten
generation of architecture for multi-objective systems.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

Electromagnets are an integral feature of the techno
ical reality. They are essential in an extremely wide va
ety of applications, and, as a consequence, their design
the same pressures that rule all of engineering today: m
turization, compactness and high-density of function ser
In the case of electromagnets, the push toward high de
means high magnetic fields, low power dissipation, lig
weight, and no overheating (safety). In particular, the in
nal temperature is central for efficient operation, and for p
venting the mechanical collapse of the electromagnet.

These objectives are summarized well by Herlach’s
recent statement that “what is needed in the first p
are better materials, good designs and fresh ideas”. Ef
have been made in the past to optimize the shape
the solenoid from the magnetic point of view, i.e.,
produce higher magnetic field with less power and volu
of conductor [2,3]. More recently, Morgan [4] presented
design approach to minimize the weight of the solen
However, the heat transfer aspect was not taken into acc
in these optimizations.
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In this paper we propose a constructal approach
the design of electromagnets. This approach addresse
heat transfer objective, which is similar to the object
pursued in the cooling of high-density electronic packa
[5,6]. We pursue a geometry that minimizes the hot s
temperature subject to the finite-size constraints detaile
the text. There is more than one reason for conside
this approach. First, the hot spot temperature must
below a certain temperature, for example, below the mel
point of the conductors and the thermal limit of structu
materials. Second, the electrical resistivity increases
the temperature, leading to higher power dissipation. Th
the mechanical strength of the solenoid decreases a
temperature of the structure increases. In sum, heat tra
and geometry play key roles in the quest for high-den
and light-weight electromagnets.

2. Electromagnetism

Fig. 1 shows the front and side views of the soleno
A wire is wound in many layers around a cylindrical space
radiusr0. Even though other shapes can be contemplate
maximizing the magnetic field, we limit the discussion to
cylindrical coil. The current density inside the wire genera
a one-dimensional magnetic field on the axis of symmetr
the coil. We consider the solenoid as a continuous mediu
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Nomenclature

B0 magnetic induction at the center of the coil . . T
D half-thickness of a cooling disc . . . . . . . . . . . . m
G dimensionless magnetic parameter
j current density . . . . . . . . . . . . . . . . . . . . . . A·m−2

k0 low thermal conductivity . . . . . . . . W·m−1·K−1

k1 high thermal conductivity . . . . . . . W·m−1·K−1

L half-length of the coil . . . . . . . . . . . . . . . . . . . . . m
n number of cooling discs
P total power dissipated . . . . . . . . . . . . . . . . . . . . W
q ′′′ volumetric heat source . . . . . . . . . . . . . . . W·m−3

q̃ dimensionless volumetric heat source
r radial position. . . . . . . . . . . . . . . . . . . . . . . . . . . . m
r0 inner radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
r1 outer radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
T0 sink temperature. . . . . . . . . . . . . . . . . . . . . . . . . . K
V solenoid volume. . . . . . . . . . . . . . . . . . . . . . . . . m3

Greek symbols

θ dimensionless temperature
φ fraction of the volume occupied by the discs
ρ electrical resistivity . . . . . . . . . . . . . . . W·m·A−2

Subscripts

max maximum
opt optimal

Superscript

(˜) dimensionless parameters

Fig. 1. The main features of solenoid geometry.
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which the current densityj is constant. The inner and out
radii of the coil arer0 andr1, and the axial length is 2L. In
practice, the inner radius is set by the application in wh
the solenoid is used, and so is the magnetic field that is t
achieved inside the solenoid.

The magnetic induction is maximum at the origin(z =
r = 0), and at that position is given by [7]

B0 = 0.2πj

L/2∫
−L/2

( r1∫
r0

r2 dr

(r2 + z2)3/2

)
dz (1)

For the purpose of the present demonstration, we
consider that the magnetic inductionB0 is fixed. It represents
the magnetic induction that our design must be able
produce for the application of interest. The power dissipa
by the electric current used to produce the magnetic field

P = 2πρj2

L/2∫
dz

r1∫
r

r dr (2)
−L/2 0
whereρ is the electrical resistivity of the material. Eqs. (
and (2) can be combined to obtain

B0 =
(

P

ρr0

)1/2

G

(
r1

r0
,
L

r0

)
(3)

The functionG depends only on geometry: for the case o
constant current density it is given by [7]

G = 0.2

(
2πL̃

r̃2
1 − 1

)1/2

ln
r̃1 + (L̃2 + r̃2

1)1/2

1+ (L̃2 + 1)1/2
(4)

where

(r̃1, L̃) = (r1,L)

r0
(5)

The G function has been maximized in literature [7,
The maximum isGmax = 0.179, and occurs at̃r1,opt = 3.1
and L̃opt = 1.9. These geometric features correspond
a dimensionless volume of̃V = 51.4, whereṼ has been
defined as

Ṽ = V

r3 = πL̃
(
r̃2
1 − 1

)
(6)
0
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Fig. 3 shows a constant-G curve in the geometry space. F
a fixed power inputP , Eq. (3) shows that all the poin
of the constant-G curve represent designs producing
same magnetic field. The challenge is to find which of th
designs is best from the thermal point of view.

3. Heat transfer

Several options are available for cooling the electrom
net effectively. In this paper we examine the use of h
thermal conductivity cooling discs of thickness 2D, as il-
lustrated in Fig. 2. The discs are transversal and separa
solenoid into sub-coils. No current passes through the d
Their function is simply to collect the heat generated in
solenoid, and to lead it to the exterior. At first, the fracti
of the volume occupied by the discs is known and fixed b

φ = Dn

L
(7)

wheren is the number of discs. Most of the volume mu
be filled by the winding, as required by the drive towa
compactness, thereforeφ � 1. This means that the presen
of the discs does not affect significantly the magnetic fie
Eq. (1).

Most of the generated heat is transported outside
coil through the inserts. Recognizing that fact, we assu
that all the boundaries are adiabatic, except the exp
external surfaces of the discs, which serve as heat sinks

Fig. 2. Solenoid cooled by transversal discs with high thermal conducti
e
.

d

where the temperature is fixed atT0. The equation for hea
conduction in cylindrical coordinates is

∂2T

∂z2 + 1

r

∂

∂r

(
r
∂T

∂r

)
+ ρ

k
j2 = 0 (8)

The thermal conductivityk is set equal tok0 in the winding,
and to k1 in the cooling discs. Even though the therm
conductivity of typical winding materials is relatively hig
for the sake of the present discussion, the conductivity of
inserts is considered to be much larger,k1/k0 	 1. It is quite
likely that due to imperfect compactness, the air pocket
the winding will reduce the conductivityk0. The heat source
term in Eq. (8) is related to the fixed power input, Eq. (2)

The heat transfer analysis consists of determining
temperature field for many solenoid shapes, and calcula
the hot spot temperature for each shape. A simple ana
can be used at this stage. Consider the case where onl
cooling disc is inserted in the coil,n = 1. The hot spot is
located at the inner radiusr0, and at the maximum axia
distance from the cooling disc (Fig. 2). Because the ther
conductivity ratiok1/k0 is much greater than one, it mak
sense to assume that in the lower conductivity mate
(the winding) heat flows axially. The heat flow continu
radially through the disc, and reaches the heat sink.
unidimensionality of the heat flow in the two sections of
magnet (winding and cooling discs) would also be pres
if the cooling discs were to be replaced by a more refi
cooling technique (for example, water cooled discs). Alo
thek0 path, heat flows according to

d2T

dz2 = q ′′′

k0
(9)

Fig. 3. The locus of designs with constantG in the geometry space (r̃1, L̃).
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with the boundary condition

dT

dz
= 0 atz = L (10)

Writing Tc for the temperature in the cooling disc atr0, we
obtain

Tmax− Tc = q ′′′L2

2k0
(11)

The equation for radial heat conduction through thek1
material is

k1D
1

r

d

dr

(
r

dT

dr

)
= Lq ′′′ (12)

with the boundary condition

dT

dr
= 0 atr = r0 (13)

By solving Eq. (12), we obtain the temperature differen
between the inner and outer radii of the disc,

Tc − T0 = q ′′′Lr2
0

4k1D

[(
r1

r0

)2

− 1

]
− q ′′′Lr2

0

2k1D
ln

(
r1

r0

)
(14)

The temperature difference between the hot spot and the
is thus the sum of Eqs. (11) and (14),

�T̃max= Tmax− T0

P/(r0k0)
= L̃

2πn2(r̃2
1 − 1)

+ 1

2πφk̃L̃

(
1

2
− ln r̃1

r̃2
1 − 1

)
(15)

where k̃ = k1/k0 	 1, and the volumetric heat sourceq ′′′
has been replaced byP/V . The number of discs(n) appears
now in Eq. (15).

4. Combining heat transfer with electromagnetism

Fig. 4 shows how the hot spot temperature varies al
the constant-G curve, for severaln. There is a minimum in
every case (marked by a small circle in Fig. 4), and this m
mum is a function ofn. These minima are reported in Fig.
Note that even though the magnetic induction is only 8
of the magnetic induction produced by the electromagne
optimal shape (G = 0.15 instead ofGmax= 0.179), the de-
crease in the hot spot temperature is relatively larger.
dimensionless hot spot temperature is only 67% of the v
for the solenoid of optimal shape.

At this point, we note that the optimized solenoid occ
pies a much larger volume than the solenoid optimized o
from a magnetic point of view. For example, for the ca
n = 1 the optimal outer radius and length of the solen
optimized with the previous analysis are found to be
and 4.3, respectively. These dimensions correspond to
mensionless volume of̃V = 872.8, which compares unfa
vorably with the volume of the solenoid optimized from t
magnetic point of view only,̃V = 51.4 (Section 2). There is
-

Fig. 4. The behavior of the hot spot temperature when theG and φk̃

parameters are fixed.

Fig. 5. Comparison between the numerical and analytical results for th
spot temperature.

one order of magnitude difference between the two volum
This aspect is discussed in more detail in Section 6. Note
ther that the hot spot temperature decreases as the num
discs increases. The downside of this is that a more com
solenoid would have to be built.

5. Numerical optimization

The preceding analysis is valid in the limit̃k 	 1
and φ � 1. We also performed a numerical simulati
and optimization without thẽk and φ assumptions, an



L. Gosselin, A. Bejan / International Journal of Thermal Sciences 43 (2004) 331–338 335

he

e ar

gen
the

ex-
tact

on-
the
e-
hot

sym
ing
mer

the
ude
ame

ned
.
imal
rds
sing

n
ed
the

me

noid
bly
ro-
of

the
ol-
oil

pro-
on
eti-

lec-
t the

ypes,
he

cal
. 8.
we compared the results with those of Section 4. T
dimensionless equation for conduction is

1

r̃

∂

∂r̃

(
r̃
∂θ

∂r̃

)
+ ∂2θ

∂z̃2
+ q̃

k̃
= 0 (16)

The dimensionless temperature and heat generation rat

θ = T − T0

P/(r0k0)
(17)

q̃ = 1

Ṽ
(18)

The total power dissipated in the coil,P , which is propor-
tional to the volumetric heat generation rate,q ′′′, has been
used to non-dimensionalize the temperature. The heat
eration term is equal to zero in the spaces occupied by
high conductivity discs. All the boundaries are adiabatic,
cept for the outer surfaces of the discs, which are in con
with a temperature reservoir atθ = 0. Eq. (16) was solved
using a finite elements code [9]. The grid employed c
sists of 85 nodes in the axial direction, and 60 nodes in
radial direction. It was found that further grid doubling r
sults in changes smaller than 1% in the dimensionless
spot temperature. Because the temperature profile is
metric about the disc midplane, only half of the conduct
domain between two consecutive discs was modeled nu
ically.

The numerical results forG = 0.15 are compared with
the analytical results in Fig. 5. The agreement between
two curves is adequate in view of the order-of-magnit
character of the analysis. The qualitative trends are the s
analytically and numerically.

The geometric features of the optimal design obtai
numerically (̃r1,opt, L̃opt, Ṽopt) are reported in Fig. 6
As the number of inserted discs increases, the opt
electromagnet becomes thinner and longer. In other wo
the optimal outer radius of the electromagnet is a decrea

Fig. 6. Optimal geometry for a specified electromagnetic performance(G).
e

-

-

-

,

,

function of n, while its length is an increasing functio
of n. The numerical results also confirm a trend outlin
by the analysis of Section 4: even though the volume of
optimized electromagnet tends to diminish asn increases, it
still remains one order of magnitude greater than the volu
for G = Gmax.

6. Constant volume

The results reported in Section 4 showed that the sole
optimized thermally and electromagnetically is considera
larger than the winding optimized solely from the elect
magnetic point of view. In practice, the volume, amounts
materials and weight are additional constraints. Fixing
amount of electrical conductor is equivalent to fixing the v
ume of the coil. In this section, we propose to fix the c
volume,

Ṽ = π
(
r̃2
1 − 1

)
L̃ (19)

This new constraint reduces the number of designs that
vide the same magnetic field. Previously, all the points
a constant-G curve represented shapes that were magn
cally equivalent. Now, for fixed volume,G-parameter and
power input, only two shapes are equivalent from the e
tromagnetic point of view. These designs are located a
intersection of the constant-G and constant-V curves in the
r̃1–L̃ plane. See points A and B in Fig. 7.

For a givenṼ and n, the point with the lowest�T̃max
corresponds to the best design. There are two design t
A (thin and long solenoid), and B (thick and short). T
optimal design forn = 1 is of type B, while forn � 2 the
optimal design is of type A. The analytical and numeri
results for the optimal designs (A or B) are reported in Fig

Fig. 7. Designs (A, B) with specified electromagnetic performance(G) and
volume (̃V ).
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Fig. 8. The effect of the specified volume on the hot-spot temperatu
(constantG andφ).

7. Optimal amount of high thermal conductivity
material

The preceding formulation was based on the assump
thatφ is much smaller than one. Accordingly, the insert
of discs in the solenoid did not affect the magnetic field. T
G parameter was particularly simple in that case.

Now, we propose to optimize the amount of high cond
tivity material as well. This can be done by taking into a
count the presence of the cooling discs when calculating
G parameter. Here is why an optimal amount ofk1 material
must exist. If this amount increases, the hot spot tempera
decreases. On the other hand, because the high-conduc
material does not contribute to the magnetic field, a de
with a highφ value will not be able to achieve the requir
(high) magnetic field. There must be a trade-off, where
amount of high conductivity materials is large enough
cool the coil, and small enough to produce a high magn
field.

Let us start with the simple casen = 1. It can be shown
that when the cooling discs are taken into account,
equivalentG factor is a function of̃L, D̃ andr̃1 [7]:

Geq, n=1 = GL̃L̃1/2 − GD̃D̃1/2

(L̃ − D̃)1/2
(20)

The factorsGL̃ andGD̃ are given by Eq. (4), namely,

GL̃ = 0.2

(
2πL̃

r̃2
1 − 1

)1/2

ln
r̃1 + (L̃2 + r̃2

1)1/2

1+ (L̃2 + 1)1/2
(21)

GD̃ = 0.2

(
2πD̃

r̃2
1 − 1

)1/2

ln
r̃1 + (D̃2 + r̃2

1)1/2

1+ (D̃2 + 1)1/2
(22)
y

Fig. 9. The relation betweeñr1, L̃ andD̃ when the volume occupied by th
discs is taken into account in the calculation ofG.

It is worth noting that L̃ and D̃ are now independen
variables, because the percentage of the volume occu
by the disc (φ) is not fixed, but must be optimized. Th
external shape features (L̃, r̃1) are linked via the tota
volume constraint, Eq. (19). FixingGeq, n=1, P andṼ leaves
only one degree of freedom. We chooseL̃ as this degree o
freedom.

Fig. 9 shows how̃D and r̃1 vary with L̃. All the designs
of Fig. 9 are equivalent magnetically (Geq, n=1 = 0.15) and
have the same mass or volume (Ṽ = 100). We want to find
out which of these designs performs best from the ther
point of view. To this end, we varỹL, and solve Eq. (16
numerically. In this more refined analysis, the dimension
heat source in Eq. (16) is:

q̃ = 1

Ṽ (1− nD̃/L̃)
(23)

i.e., that the power is dissipated only in the coil mater
Fig. 10 shows that there is an optimalL̃, so that�T̃max

reaches a minimum. Fig. 9 delivers the correspond
optimal D̃ and r̃1. This design is indicated with a sma
circle. It is an important result because it means that th
is an opportunity to take into account simultaneously
magnetic, thermal and volume aspects in the optimiza
of an electromagnet.

Fig. 11 shows how the minimized hot spot temperat
varies withṼ andGeq, n=1. Each point on these curves is t
result of the optimization procedure described above.
lighter (small-̃V ) and high-G coils are the worst thermally
The correspondingφopt, L̃opt and r̃1,opt values are reporte
in Figs. 12 and 13.

We also performed the analysis forn > 1. The corre-
sponding equivalentG factor for an odd or even number
discs is given respectively by
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Fig. 10. The effect of̃L on the hot-spot temperature whenG and Ṽ are
fixed.

Fig. 11. The effect ofG andṼ on the minimized hot-spot temperature.

Geq, nodd= 1

(L̃ − nD̃)1/2

[
GL̃L̃1/2 − GD̃D̃1/2

+
(n−1)/2∑

i=1

(
G(2iL̃)/n−D̃

(
2iL̃

n
− D̃

)1/2

−
)

− G(2iL̃)/n+D̃

(
2iL̃

n
+ D̃

)1/2
]

(24)

Geq, neven= 1

(L̃ − nD̃)1/2

[
GL̃L̃1/2

+
n/2∑(

G((2i−1)L̃)/n−D̃

(
(2i − 1)L̃

n
− D̃

)1/2

−

i=1
Fig. 12. The optimized fraction of the volume occupied by the cooling di

Fig. 13. The optimal geometry that corresponds to the designs optimiz
Figs. 11 and 12.

− G((2i−1)L̃)/n+D̃

(
(2i − 1)L̃

n
+ D̃

)1/2)]
(25)

The electromagnet has been optimized numerically
a fixed Geq and Ṽ , and for different numbers of hig
thermal conductivity discs. Fig. 14 shows how the
spot temperature varies with the number of discs. An
increases, the hot spot temperature first drops dramatic
and then continues to decrease slowly. The optimal r
of the volume occupied by the high thermal conductiv
material is also plotted at Fig. 14. It is a slowly increas
function ofn.



338 L. Gosselin, A. Bejan / International Journal of Thermal Sciences 43 (2004) 331–338

spot

by
nc-
om
etic
or-

igh
use
g-

p-
n:
ar-
n be
jec-
ains
the

l-
the
ffi-
pec

hen

be
The
o be
olds
rm.
an

be
l. For
ered
tion
he
ng

the
the

) to
the

and
d to
nce
ant

auss,

f a
tant

tic
. 45

ht
(5)

ing
799–

am-

ge,

9.
l,

tric
ir
002)

pti-
ntal
Fig. 14. The effect of the number of cooling discs on the minimized hot-
temperature and the optimized volume fraction occupied by the discs.

8. Conclusions

In this paper we showed that the optimal shape (r̃1, L̃)
and structure (φ, n) of an electromagnet can be deduced
considering simultaneously its thermal and magnetic fu
tions. The optimal configuration of the system results fr
the competition between these two objectives, high magn
fields and small hot-spot temperatures. For example, in
der to cool the coil it is better to use greater amounts of h
thermal conductivity material. On the other hand, the
of bulkier high-conductivity discs is detrimental to the ma
netic performance of the electromagnet.

This competition is an opportunity to explore the o
timization of architecture in a multidisciplinary domai
magnetic and thermal. The work of generating the flow
chitecture shows that the constructal design method ca
applied to systems with more than one objective. The ob
tives compete not only among themselves, but also ag
the global constraints of the system, which are three:
highest magnetic field possible (theG parameter), the smal
est volume, and the highest allowable temperature. In
first part of the paper, the volume and magnetic field e
ciency were used as constraints. The alternative was to s
ify the maximum temperature and the coil volume, and t
maximize theG parameter.

The constructal approach illustrated in this paper can
extended to more complex electromagnetic systems.
external shape of the electromagnet does not have t
a cylinder, and can be optimized as well. The same h
for the current density that, in general, can be nonunifo
Cooling methods other than high-conductivity inserts c
t

-

also be studied. Finally, the list of objectives that must
pursued increases as the model becomes more practica
example, to the thermal and magnetic objectives consid
in this paper one may consider adding the maximiza
of the mechanical integrity [10] of the solenoid, and t
minimization of the total cost of building and operati
the system that employs the electromagnet. In sum,
road to a more realistic constructal design is from

local optimization of the element (e.g., electromagnet
the “integrative” design of the installation that uses
element [11].
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