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Abstract

This paper addresses the fundamental problem of optimizing the geometry of an electromagnet by maximizing at the same time its
magnetic performance and thermal performance. The solenoid has a cylindrical shape and a uniform current density. Cooling discs made o
high thermal conductivity material are inserted in the coil to collect the heat generated by Joule heating. The collected heat is evacuated to
the ambient. For a given magnetic performance and volume, the maximum temperature inside the electromagnet is minimized by selecting
the shape of the coil (length and outer radius), the number of cooling discs, and the amount of high thermal conductivity material. The two
objectives pursued in this geometric optimization (magnetic and thermal) show that the constructal design method can be extended to the
generation of architecture for multi-objective systems.
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1. Introduction In this paper we propose a constructal approach to
the design of electromagnets. This approach addresses the

i heat transfer objective, which is similar to the objective

Electromagnets are an integral feature of the technolog-pursued in the cooling of high-density electronic packages

ical reality._ Th_ey are essential in an extremely widt_a vari- [5,6]. We pursue a geometry that minimizes the hot spot
ety of applications, and, as a consequence, their design feelgemperature subject to the finite-size constraints detailed in

the same pressures that rule all of engineering today: minia-ine text. There is more than one reason for considering

turization, compactness and high-density of function served. g approach. First, the hot spot temperature must be

In the case of electromagnets, the push toward high densitype|ow a certain temperature, for example, below the melting

means high magnetic fields, low power dissipation, light- point of the conductors and the thermal limit of structural

weight, and no overheating (safety). In particular, the inter- materials. Second, the electrical resistivity increases with

nal temperature is central for efficient operation, and for pre- the temperature, leading to higher power dissipation. Third,

venting the mechanical collapse of the electromagnet. the mechanical strength of the solenoid decreases as the
These objectives are summarized well by Herlach’s [1] temperature of the structure increases. In sum, heat transfer

recent statement that “what is needed in the first place and geometry play key roles in the quest for high-density

are better materials, good designs and fresh ideas”. Effortsand light-weight electromagnets.

have been made in the past to optimize the shape of

the solenoid from the magnetic point of view, i.e., to

produce higher magnetic field with less power and volume 2. Electromagnetism

of conductor [2,3]. More recently, Morgan [4] presented a

design approach to minimize the weight of the solenoid.  Fig. 1 shows the front and side views of the solenoid.

However, the heat transfer aspect was not taken into account wire is wound in many layers around a cylindrical space of

in these optimizations. radiusrg. Even though other shapes can be contemplated for

maximizing the magnetic field, we limit the discussion to a
cylindrical coil. The current density inside the wire generates

~* Corresponding author. a one-dimensional magnetic field on the axis of symmetry of

E-mail address: dalford@duke.edu (A. Bejan). the coil. We consider the solenoid as a continuous medium in
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Nomenclature
Bo magnetic induction at the center of the coil.. T T temperature . ... [
D half-thickness of a coolingdisc ............ m To sinktemperature............... ..o I
G dimensionless magnetic parameter 1% solenoidvolume......................... 3m
. ; -2
Jj currentdensity .. ... RRRERERERERRREES l-m ) Greek symbols
ko low thermal conductivity ........ Wh™.K~ ) )
k1 high thermal conductivity . . . . . .. wh~1.K-1 0 dimensionless temperature
L half-length of the coil ..................... m ¢ fraction of the volume occupied by the discs
n number Of C00|ing diSCS 1% e|ectl’ica| I’eSiStiVity ............... W']'Aiz
P total power dissipated . ................... W Subscripts

i 3
q~/” vglume.trlc heat source e Ha max  maximum
q d|m_enS|or?I_ess volumetric heat source opt optimal
r radial position.................oooiii L. m )
ro INNerradius. . ......ooveeeee e, m  Superscript
ri outerradiuS........coiiiiiii m (7) dimensionless parameters

| I: 2L >

T

winding

Fig. 1. The main features of solenoid geometry.

which the current density is constant. The inner and outer wherep is the electrical resistivity of the material. Egs. (1)

radii of the coil arerg andry, and the axial length is2 In and (2) can be combined to obtain
practice, the inner radius is set by the application in which PAY2 /L
the solenoid is used, and so is the magnetic field that is to beBy = <_) (—1, —) (3)
achieved inside the solenoid. pro o 70
The magnetic induction is maximum at the origin= The functionG depends only on geometry: for the case of a
r =0), and at that position is given by [7] constant current density it is given by [7]
L2, n 2nL \Y? P14 (L2 +7)Y?

2dr G=02 In =~ 12 4)

Bo=0.27j / 1) iZ—1 1+(L“+1)
(r (r2422)372
where
. . ~ g (rla L)
For the purpose of the present demonstration, we will (71,L) = (5)
1o

consider that the magnetic inductiByg is fixed. It represents ’ o o
the magne“c |nduct|0n that our des|gn must be ab|e to The G funCtlon ha.S been maX|m|Zed N ||terature [7,8]
produce for the application of interest. The power dissipated The maximum isGmax = 0.179, and occurs & opt = 3.1

by the electric current used to produce the magnetic field is @nd Lopt = 1.9. These geometric features correspond to
a dimensionless volume df = 514, whereV has been

L/2  n defined as
P = 27pj° / dz/rdr @ g_Y _p-y (6)
=== 2

—-L/2 ro o
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Fig. 3 shows a constarti-curve in the geometry space. For where the temperature is fixed &. The equation for heat
a fixed power inputP, Eq. (3) shows that all the points conduction in cylindrical coordinates is
of the constantG curve represent designs producing the .» 19/ T P
same magnetic field. The challenge is to find which of these — + —— <r—> + —j2 =0 (8)
designs is best from the thermal point of view. 9z%  ror\ or k
The thermal conductivity is set equal tdo in the winding,
and tok; in the cooling discs. Even though the thermal
conductivity of typical winding materials is relatively high,
for the sake of the present discussion, the conductivity of the
inserts is considered to be much lardey,ko > 1. Itis quite
Several options are available for cooling the electromag- likely that due to imperfect compactness, the air pockets in
net effectively. In this paper we examine the use of high the winding will reduce the conductivié. The heat source
thermal conductivity cooling discs of thicknes®2as il- term in Eq. (8) is related to the fixed power input, Eq. (2).
lustrated in Fig. 2. The discs are transversal and separate the The heat transfer analysis consists of determining the
solenoid into sub-coils. No current passes through the discs.temperature field for many solenoid shapes, and calculating
Their function is simply to collect the heat generated in the the hot spot temperature for each shape. A simple analysis
solenoid, and to lead it to the exterior. At first, the fraction can be used at this stage. Consider the case where only one
of the volume occupied by the discs is known and fixed by ~cooling disc is inserted in the coik, =1. The hot spot is
located at the inner radiug), and at the maximum axial
_Dn 7) distance from the cooling disc (Fig. 2). Because the thermal
L conductivity ratiok1/ ko is much greater than one, it makes
sense to assume that in the lower conductivity material
(the winding) heat flows axially. The heat flow continues
radially through the disc, and reaches the heat sink. This
unidimensionality of the heat flow in the two sections of the
magnet (winding and cooling discs) would also be present
Eq. (1). if the cooling discs were to be replaced by a more refined

Most of the generated heat is transported outside the cqoling technique (for example, water cooled discs). Along
coil through the inserts. Recognizing that fact, we assume the k. path, heat flows according to

that all the boundaries are adiabatic, except the exposed ’

3. Heat transfer

¢

wheren is the number of discs. Most of the volume must
be filled by the winding, as required by the drive toward
compactness, therefoge« 1. This means that the presence
of the discs does not affect significantly the magnetic field,

"
external surfaces of the discs, which serve as heat sinks, and” -1 Q)
dz2 ko
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Fig. 2. Solenoid cooled by transversal discs with high thermal conductivity. Fig. 3. The locus of designs with constastin the geometry space, Z).
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0.2

with the boundary condition G=0.15
dr

— =0 atz=L (10)

dz

Writing T;, for the temperature in the cooling discrat we AT max
obtain

q///LZ

11
e (11) .

The equation for radial heat conduction through the
material is

Tmax - TC =

1d/ dr

D-—(r—)=Lqg” 12 1
k1 r dr (r dr ) a (12)
with the boundary condition
dr '
—_— = O atr = ro (13) 0 T T T T T T T T T
dr 0 5 10
By solving Eqg. (12), we obtain the temperature difference i

between the inner and outer radii of the disc, y
Fig. 4. The behavior of the hot spot temperature when Ghend ¢k

T qurg |:(r_1)2 ~ 1i| B q”’Lrg ln(ﬂ) (14) parameters are fixed.

4k D ro 2k1D ro
The temperature difference between the hot spot and the sink | k=100
is thus the sum of Eqgs. (11) and (14), 0.06 - ¢=0.01
~ Tmax— T L

ATmaxz max 0 _ — ~

P/(roko) 2rnn Ff =1 AT s min 1

1 1 Infg
+ (= - 15
2w kL (2 2 — 1) (15) 0.04

analysis (G,,,, =0.179)

wherek = k1/ko > 1, and the volumetric heat sourgé’
has been replaced B/ V. The number of discé:) appears
now in Eq. (15).

analysis (G =0.15)

numerical results (G = 0.15)

4. Combining heat transfer with electromagnetism ]

Fig. 4 shows how the hot spot temperature varies along 0 l . : .
the constants curve, for severatk. There is a minimum in 1 2 3 4 5 6
every case (marked by a small circle in Fig. 4), and this mini- n
mum is a function of.. These mmlmfa a,re repprtgd in Fig. 5. Fig. 5. Comparison between the numerical and analytical results for the hot
Note that even though the magnetic induction is only 84% spot temperature.
of the magnetic induction produced by the electromagnet of
optimal shape@ = 0.15 instead 0iGmax= 0.179), the de- ) )
crease in the hot spot temperature is relatively larger. The ©N€ order of magnitude difference between the two volumes.
dimensionless hot spot temperature is only 67% of the value This aspectis discussed in more detail in Section 6. Note fur-
for the solenoid of optimal shape. ther that the hot spot temperature decreases as the number of
At this point, we note that the optimized solenoid occu- diScs increases. The downside of this is that a more complex

pies a much larger volume than the solenoid optimized only Selénoid would have to be built.

from a magnetic point of view. For example, for the case

n =1 the optimal outer radius and length of the solenoid

optimized with the previous analysis are found to be 8.1 5. Numerical optimization

and 4.3, respectively. These dimensions correspond to a di-

mensionless volume of = 8728, which compares unfa- The preceding analysis is valid in the limi > 1
vorably with the volume of the solenoid optimized fromthe and ¢ < 1. We also performed a numerical simulation
magnetic point of view only]7 =514 (Section 2). Thereis  and optimization without th& and ¢ assumptions, and
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we compared the results with those of Section 4. The function of n, while its length is an increasing function

dimensionless equation for conduction is of n. The numerical results also confirm a trend outlined
2 ~ by the analysis of Section 4: even though the volume of the
19 /.90\ 9% G - A :
e —— +==0 (16) optimized electromagnet tends to diminishnaigcreases, it
ror\ or 2%k still remains one order of magnitude greater than the volume
The dimensionless temperature and heat generation rate ardor G = G max.
T — T
= Plioto )
1/ To%o 6. Constant volume
[ = = 18
1=7 (18)

The results reported in Section 4 showed that the solenoid
The total power dissipated in the colt, which is propor-  optimized thermally and electromagnetically is considerably
tional to the volumetric heat generation rag¢f, has been  |arger than the winding optimized solely from the electro-
used to non-dimensionalize the temperature. The heat genmagnetic point of view. In practice, the volume, amounts of
eration term is equal to zero in the spaces occupied by thematerials and weight are additional constraints. Fixing the
high conductivity discs. All the boundaries are adiabatic, ex- amount of electrical conductor is equivalent to fixing the vol-
cept for the outer surfaces of the discs, which are in contactyme of the coil. In this section, we propose to fix the coil
with a temperature reservoir at= 0. Eq. (16) was solved  yglume,
using a finite elements code [9]. The grid employed con- _ 5 -
sists of 85 nodes in the axial direction, and 60 nodes in the V =7 (7i{ — 1)L (19)

radial direction. It was found that further grid doubling re-  This new constraint reduces the number of designs that pro-
sults in changes smaller than 1% in the dimensionless hot,ije the same magnetic field. Previously, all the points on

spot temperature. Because the temperature profile is sym— onstanic curve represented shapes that were magneti-

metric about the disc midplane, only half of the conducting cally equivalent. Now, for fixed volumeG-parameter and

_dorlmlwam between two consecutive discs was modeled numer—pOWer input, only two shapes are equivalent from the elec-
ically.

. ) tromagnetic point of view. These designs are located at the
The numerical results fo& = 0.15 are compared with

: S inteNrsection of the constarti-and constant# curves in the
the analytlcz_:ll results in F_lg. 5 The agreement betwee_n the;l_L plane. See points A and B in Fig. 7.
two curves is adequate in view of the order-of-magnitude

h ter of th sis. Th litative trend th For a givenV andn, the point with the lowest Tnax
character otine analysis. ' he quaiitative trends are the SameCorresponds to the best design. There are two design types,
analytically and numerically.

. . . . A (thin and long solenoid), and B (thick and short). The
The_ ge"ometrlc feialture% of the optlmalt %eglganbtaéned optimal design fom =1 is of type B, while forn > 2 the
Zuﬂﬁnci ymgl’?pt’f ir‘]’pt’ " ‘apt)diare irr?pror € mth '9. o joptimal design is of type A. The analytical and numerical
S (N€ NuMDber of Inserted diScs Increases, he oplimal oq i for the optimal designs (A or B) are reported in Fig. 8.
electromagnet becomes thinner and longer. In other words,

the optimal outer radius of the electromagnetis a decreasing 10 —
10 . i
G=0.15 i
1 $=0.01 4 o
v | k=100 -
Lopt T Liii L J
f.l.om - i
i .
5 I 1000 |
] ~ i {/Opl N
- o L
0 T T T T T T T T T T -
0 T T T T 500 0 10

Fig. 7. Dgsigns (A, B) with specified electromagnetic performaiceand
Fig. 6. Optimal geometry for a specified electromagnetic performégige volume (V).
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0.1 0.4
AN k=100 ¢=0.01

G=0.15

AT

max, min

0.05 -

- - - analytical
N ~—— numerical

1000

lwil

0.2

Fig. 9. The relation betweeRy, I and D when the volume occupied by the

Fig. 8. The effect of the specified volume on the hot-spot temperature at discs is taken into account in the calculationdf

(constantG andg).

It is worth noting thatZ and D are now independent
variables, because the percentage of the volume occupied
by the disc ¢) is not fixed, but must be optimized. The
external shape featured ( 71) are linked via the total
The preceding formulation was based on the assumptionvolume constraint, Eq. (19). FixinGeq n—1, P andV leaves
that¢ is much smaller than one. Accordingly, the insertion only one degree of freedom. We chodsas this degree of
of discs in the solenoid did not affect the magnetic field. The freedom. 5 _
G parameter was particularly simple in that case. Fig. 9 shows howD andr; vary with L. All the designs
Now, we propose to optimize the amount of high conduc- of Fig. 9 are equivalent magneticallg ¢q »—1 = 0.15) and
tivity material as well. This can be done by taking into ac- have the same mass or volunié £ 100). We want to find
count the presence of the cooling discs when calculating theout which of these designs performs best from the thermal
G parameter. Here is why an optimal amounkginaterial point of view. To this end, we vary., and solve Eq. (16)
must exist. If this amount increases, the hot spot temperaturenumerically. In this more refined analysis, the dimensionless
decreases. On the other hand, because the high-conductivitieat source in Eq. (16) is:
material does not contribute to the magnetic field, a design 1
with a high¢ value will not be able to achieve the required §= ~——~~~
(high) magnetic field. There must be a trade-off, where the V(A —-nD/L)
amount of high conductivity materials is large enough to j.e,, that the power is dissipated only in the coil material.
cool the coil, and small enough to produce a high magnetic Fig. 10 shows that there is an optimEl so that A Tmax
field. reaches a minimum. Fig. 9 delivers the corresponding
Let us start with the simple case= 1. It can be shown  optimal D and 71. This design is indicated with a small
that when the cooling discs are taken into account, the circle. It is an important result because it means that there
equivalentG factor is a function of, D andry [7]: is an opportunity to take into account simultaneously the
magnetic, thermal and volume aspects in the optimization

7. Optimal amount of high thermal conductivity
material

(23)

~T1/2 ~nl/2
GpLY?2 - GzDY

Geqn=1 = s (20) of an electromagnet. o
(L—D) Fig. 11 shows how the minimized hot spot temperature
The factorsG> andG 5 are given by Eq. (4), namely varies withV andGeq ,—1. Each point on these curves s the
L b ’ ’ result of the optimization procedure described above. The
2r I \Y2 74 (I2+ 7212 lighter (small¥’) and high& coils are the worst thermally.
Gy = O.2<~2—1> Tlll/z (21) The correspondingopt, Lopt andiy opt Values are reported
T~ +(€L2+D in Figs. 12 and 13.
~ .12 - ~> 212 We also performed the analysis far> 1. The corre-
Gp= O.2< 2nD > Int + (lz +ri) (22) sponding equivalent factor for an odd or even number of
-1 1+ (D24 1)1/? discs is given respectively by
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0.1 .
} k=100 V=100
| n=1 G,=0I5
.
AT, ]
0.051
O T T T T
0 5

Fig. 10. The effect offL on the hot-spot temperature wheéhand V are
fixed.

s
Il

AT ]

max, min

0.02

0 50 100 150
\

Fig. 11. The effect of5 and¥ on the minimized hot-spot temperature.

Gegnodd= @Tlﬁ)l/z [GZZUZ _ 6551/2
+ (H_Xl):/z(G(ziZ)/n—ﬁ (Z;—Z — 5) 1/2—)
i=1
~ G@iby/ntD <217L + 13)1/2] (24)
Geg neven= m |:GZZl/2
+ iz(G((Zil)Z)/nﬁ(@ ~ 5) vz

i=1

0.2
n=1
i k=100
| G, =014
(o
0.15
0.1
) 0.16
0 T T T T T
0 50 100 150

v

Fig. 12. The optimized fraction of the volume occupied by the cooling discs.

0.
15

/
/
—
]
— ]

?

L

0 50 100 150

L

Fig. 13. The optimal geometry that corresponds to the designs optimized in
Figs. 11 and 12.

i — DL ~\Y?
= G2i—)D)/n+D (T + D) (25)

The electromagnet has been optimized numerically for
a fixed Geq and V, and for different numbers of high
thermal conductivity discs. Fig. 14 shows how the hot
spot temperature varies with the number of discs. rAs
increases, the hot spot temperature first drops dramatically,
and then continues to decrease slowly. The optimal ratio
of the volume occupied by the high thermal conductivity
material is also plotted at Fig. 14. It is a slowly increasing
function ofn.
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0.02

r 0.3

0.01+ Do

AT
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Fig. 14. The effect of the number of cooling discs on the minimized hot-spot
temperature and the optimized volume fraction occupied by the discs.

8. Conclusions

In this paper we showed that the optimal shaﬁei)
and structured, n) of an electromagnet can be deduced by
considering simultaneously its thermal and magnetic func-
tions. The optimal configuration of the system results from

the competition between these two objectives, high magnetic

fields and small hot-spot temperatures. For example, in or-
der to cool the coil it is better to use greater amounts of high
thermal conductivity material. On the other hand, the use
of bulkier high-conductivity discs is detrimental to the mag-
netic performance of the electromagnet.

This competition is an opportunity to explore the op-
timization of architecture in a multidisciplinary domain:
magnetic and thermal. The work of generating the flow ar-

chitecture shows that the constructal design method can be

applied to systems with more than one objective. The objec-

tives compete not only among themselves, but also against

the global constraints of the system, which are three: the
highest magnetic field possible (tlieparameter), the small-

est volume, and the highest allowable temperature. In the

first part of the paper, the volume and magnetic field effi-

ciency were used as constraints. The alternative was to SPEC-(g] p.B. Montgomery

ify the maximum temperature and the coil volume, and then
maximize theG parameter.
The constructal approach illustrated in this paper can be

extended to more complex electromagnetic systems. The
external shape of the electromagnet does not have to be

L. Gosselin, A. Bgan / International Journal of Thermal Sciences 43 (2004) 331-338

also be studied. Finally, the list of objectives that must be
pursued increases as the model becomes more practical. For
example, to the thermal and magnetic objectives considered
in this paper one may consider adding the maximization
of the mechanical integrity [10] of the solenoid, and the
minimization of the total cost of building and operating
the system that employs the electromagnet. In sum, the
road to a more realistic constructal design is from the

local optimization of the element (e.g., electromagnet) to
the “integrative” design of the installation that uses the
element [11].
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